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ABSTRACT "

Linear estimation, theory has been applied extensively to nonlinear

systems by. assuming that pertarbations from a reforenCe solution can

be described by linear equations. As long as the second order (and

higher) terms in the perturbation equations are negligible, linear

estimation techniques have been found to yield satisfactory responzo.

Many examples have been encountered in which the linear theory is not

satisfactory, however, and It is to this situation that attention is

directed here. Time-discrete systems in which the second order effects

are small but nonnegligible are considered. Recursion relations for

the conditional mean and'covariance are developed. While these relations

yield approximations to the true values of'these mdments, they are

superior to the approximations provided by applying linear theory to

a nonlinear system. Some results for a simple system are presented

In which the response from linear and nonlinear filters is compared.
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i. INTRODUCTION

Considerable attention o been ddVoted to the problem of determining

uibiasd, 'minimum variance eitim e of the state of linear systems

from noisy measurement datt, For linear systems with additive white

noise the solution, frequently referred to as the Kalman filter, is

well-known [1] and it has received application to a variety of engineering,

problems. When the system is nonlinear, linear perturbation theory is

introduced and the linear filter is applied to estimate the 6tate

perturbations. This has been found to provjde satisfactory.results in

moat cases but occasions C21 have been encountered in which nonlinear

effects prove to have a very deleterious effect upon the filter response.

In the succeeding discussion a nonlinear filter is presented that is

appropriate for use when the second order terms are small but nonnegligible.

Computational results indicate that a significant Improvement relative

to a linear filter can be obtained using these relations.

A-considerable portion of the recent research into nonlinear filtering

bas been concerned with the determination of the a posteriori density

function of the state conditioned on all available data. Having this

density, then any type of estimate (e.g. minimum man square error,

minimum absolute, most probable) can be obtained, theoretically. Because

of the difficult's involved in using the general results that have been

obtained, attention has been directed to methods of approximating either

the density or its moments. This approach has been taken by Bass, Norum

and Schwartz [3] for continUous systems. They approximate the true a

posteriori density by assuming that it is represented by the first and

second order moments (all higher order moments are negligible). In the

investigations presented below, time-discrete systems are considered

and the a posteriori density is assumed to be gaussian 'nd recursion

relations for- the mean and covariance are derived. The relations that

are obtained are similar to the relations for linear systems but

incorporate the effect of second order terms in the plant and measurement

equations. ,



The genera problem and its solution are presented and discussed in

Section 2, No jiust.Iicatfon for the results are given there. ThisI discussion is giVen in Section 3 for a scalar system. A scalar rather

than vector system is considered because the notation is simpler and

thereby avoids uninterasting comp lications in the discussion. The

generalizat-oth to the multidimensional results presented in Section II

is straigbh forward.- A simple numerical example is discussed in Section

IV and the response of the nonlinear and linear filters is compared.

I. GENERAL PROBLEM .AND ITS SOLUTION*

The state xk of a dynamical system is to be estimated from a collection

of discrete-measurement data (z1 , "*. zk)* The evolution of the state

is assumed to be described by a system of nonlinear difference equations

Xk k 1k1 + U + w (2.1)

The m-dimensional measurement data zk at each sampling time have a known

nonlinear relationship with the state

zk 1.Hk xk + ek(Xk) + T k (2.2)

In (2.1 and (2.2) the system is assumed to be completely known except for

the initial state x0 and the plant and measurement noise sequences V

and v , The n and i-dimensional vector functions g. and ek are

known and are such that the ith component is given by

= 1 k.T G I ' (i = 1,2, ,,*,n)

SI= XT E x (I = 192t ...i)

where the G and E are symmetric (n x n) matrices. The Fk is a (n x n)

matrix and the Hk is a (m x n) matrix.

The initial state and the noise sequences are assumed explicitly to be

gaussian and to be mutually uncorrelated. Further, the noise sequences
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are taken to be uncorrelate4 between sampling, times and shall be

referred to as white noise sequences, The initial state has the
densi ty

p(x)k e I T -1
po o exp-g oa) M (xo-a) (2.3)

and at each sampling time the r ise samples have the densities

I T -1

pw) =k exp - I w1  W VI  (2.4)

I T -1
p(Yv k exp - v R v (

There are many possible types of estimates that could be considered for

this problem. Cox [43 has considered estimates for nonlinear time-discrete

systems that are chosen to maximize the a posteviori density function.

The conditional meaa is known to give the estimate that minimizes the

mean squar4 error and this estimate is considered here. Thus, the

discussion will be directed toward approximating the mean of the a

posteriori density function in a recursive fashion.
ok

The manner in which the a posteriori density p(x,/z k) evolves from one

sampling time to the next is easily.established. Specifically when the

noise is uncorrelated between sampling times, then the general recursion

relations are given by
'k

Pf~/zk P(%k/ A p(z /xk)
P.Cxk/zk) . k ik k (2.6)-plzk/z:l - - 1.

and

p(xk/zk-) = fp(xk_1/Zk-1) p(xk/xk-1 )dxk-1  (2.7)

where the normalizing constant p(zk/zk'l) is

p(zk/zkI) fP(xk/zk'1) p(zk/Xk)dxk (2.8)

The notation ak will be used to denote the set (a19a2f ... o ak)
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The integrals are n-dimensie.oal in (2.7 and (2.8).

k-4The density p(xk/zk- ). described by (2.6) will be referred to as the
kprediction density whoreas PfXk/z ) will be designated as the filteri',

density. In general it is very difficult to perform in a closed form

the operations required in (1.7) - (2.8)., Also, it is difficult to
determine the moments (specifitally the mean) from (2.6).. This is

discussed in Reference 5. However, if the moments of p(Xk1 /Z k-) are
known, it is a relatively straight forward procedure to determine the

moments of the pre.diction density p(xk/ k'i) if the plant noise is

additive and ga'issian. This will be discussed further in Section III
as will the difficulties- involved in obtaining the moments of p(xk/Zk),

When the system is linear, (i.e. g and ek are identically zero In (2.1)

and (2.2) ), then the operations in (2.6) - (2.8) can be carried exactly

and are known to be

-1 1 T -1 A
P(Xk/ = kI/k kAxp I--(x- /kx Pk/l(Xk-Xk/kl) (2.9)

and-- x k  kkexp P ^, (,0
-tk Xk) v k tk;(.0

where
A

Fk/k_1 " Pk F. (2.l1a)

Pk- Fk pk, FT + Qk-k A -1 k k -. k -11 2 . 1 1b )

and
N A -

A = x_/.H + k z k  kXk-1] (2.12a)

Kk Pk/k-1 nk[H'Ukk-I H k + R;jI (2. 12b)

Sk Pk/k-I - Kk Hk P k/k-1 (2.12c)
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Equations (2.11)- (2.12) Are known as the Kalman filter equations,.

These relation' hhve been.stated for ease of reference for the'

following discussion.When the systom described by (2.1) - (2.2) is

conaldered, it is no longer possible to obtain the exact relations for

the moments. Because of the nonlinearities,.,the prediction and filtering

densities will lose the gaussian character. In general, these densities

will lose their symmetric'properties and the skewness will, be nonzero..

This means that the maximum point of the density will no longer correspond

to the conditional mean,

If the nonlinearities are relatively smalli then the skewness will be

small and the density will retain an essentially-gaussian character.
k-1 kSupposing that the p(xk/z ) and p(Xk/z ).can be approximated by the

gaussian density even in the. presence of ,he plant and measurement

nonlinearitiess then these densities will be described by (2.9) - (2.10).

The moments "k/kl, pk/kl k' Pk will not correspond with (2.11) - (2-12)

in this case because of the Ck and ek in (2.1) - (2.2). The following

relatioro are proposed as approximations of these moments. Their

derivation is discussed in Section III.

4 A A
I k/k-I N Fk 'k- + 6k (2.13a)

= [F +41P [F +2 T + Qk-1 +20k (2.13b)

where the I th component of A is

(A G TI jrc
g) j= ".-I k Xk-1 

+ trace Gk Pk-1

The Ith row of the matrix 4k is

(Oi. = k-I k

thand the i h element of the matrix 0k is

i trace (G P K F
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For the filtering density the moments aro approximated by

Xk a Xk/k I + X £Zkzk/k. (214a)

P= P/k-1 - Kk [11k+2k) P k/k-1 (2.14b)

whore

Tk k(1k+2 Y)Pk- (Hk 2x1k)T+R+2 k1

A A A

='k/k- k IkA +k

Teith Af I
The ith component of e Is

A) A A~i(e) X o T E ^ rc

k I /k- kk-I rc Ek Pk-I

and the ith row of V is

A T 4
r k/k-il Ec

The I th element of the r-atr. ' is

(bk)j -= trace (E PkBk P

Note that if there are no nonlinear ,irms, then (2.13) and (2.14)

reduce immediately to (2.11) - (2.12)o

It is interesting to exabtine these relatik,,s by comparing (2.13) - (2.14)

with (2.11) - (2.12). First, note that tht nonlinearities have the

effect of modifying the 'linear transition mat ix Fk in (2.13b) and the

lineai observation matrix Bk in (2.14b'. In t ie former the Fk of the

linear filter is replaced by (Fk+2 Yk) and it,, i'hp latter the 11k is

modified to (. k+2 4 k). This provides the primary influence of the

nonlinearity upon the covariance matrix. Furth,.r, there is an additional

effect which can be viewed as an increase in the yant and measurement

noise covarianco matrices. The plant noise covarian,, Q k-1 is increased

to (Qk-I+20k and the measurement noise covariance bco',:s (Rk+2 &k).
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III° DERIVATION OF THE APPROXIMATING i!101ENTS

In.this Section the derivation of-the moments stated in Section II

is discussed In terms-of a scalar system. The scalar system-.is

discussed here in order to simplify the notation. The extension to,

the general multidimensional results is straight forward.

Consider the prediction density first. The only assumption required to

establish xk/h._l and Pk/k-1 is that the a posteriori density p(xk/zkl)

is gaussidn at each sampling time. The scalar version of (2.1) can be

written as

xk =f *x~1 ~ (3.1)
k fk-1 + 9k Xk +  k-1

The density for the noise sequence will be written as

p(vk)= k exp - (.Wk)

The moments of P(Xk/zk 1 ) can be obtained from (2.7) by noting that

k~/ J k I p(xk/zdx

Substituting (2.7) and iterating integrals, one obtains

= dx k P(xk./z x P(xk/xk (

The density P(xk/xk.1) is known from (3.1) and (2.4). It is

P(X/Xk i ) =*kw exp- k ( k. fkk- gkxk ')!

p(xk/xk-l) 2 q ___________

Using this relation, the innermost integral in (3.2) is easily determined.

In the case when i=1, the mean value is

Exk/xk- 1 k Xk- I + gkXk_



Then, from te ganssian property for P(Xk.1/zk), one obtains

A A (3.3)-XkAk-1 fk Xk-1 + 9k(Pk-1 + Xk-)(.)

This is the scalar version of (2.13a). It can be obtained without

recourse to the general Bayesian relation (2.7) simply by computing

the conditional expectation of Xk using (3.1).

The error in this estimate is given by -- -

A r1  A 42 A A2
Xk 'k/k-i lk k-1) + gk'k-1 -i 2(xk-1 k- )xk-IPk-I

+ Wk-
1

Using this result, the varlance is

Z[(X A ="2I] k/k-i

(f+ 2 2 2 4 2

S(f+2gk Xk-) _- + 2gk Pk-I + qk-1 (3.4)

Equation (3.4) is the scalar version of (2.13b). Note that the onlyofan 2 p kik
approximation x and is that the p(x /Z is gaussian.

The nonlinearities destroy the gaussian character of the density however

so (3.3) and (3.4) will be approximations.

The effect of the plant nonlinearity upon the density can be studied by

determining the third and fourth central moments. Xf the density

P(xk/zki) wore gaussianthen the third central moment would be identically

zero and the fourth central moment would be 3Pk/k 4.V Consider what the

values actually become. The third central moment is found to be
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= L Xk+gk~k- J gk Pk-# 35
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and the fourth central moment is

4E )/z 3  4k/k1 + 1 4k(fk+2g k x ,2p 6 (3.6)

ppk- x,-_, Pk-1

From (3.5) it is clear that the presence of the nonlinear coefficient

9k will cause the third central moment to be nonzero. Similarly* the

ckcauses the fourth central moment to change from the gaussian value.

The changes from the gaussian moments are sbon to be proportional to

Pk-1 In (3.5) and in (3.6). If the filter converges to the true

value of the state as the number of samples. becomes. large, one sees then

that the gaussian-destr' ying terms converge to zero much more rapidly

than does the variance Pk" This implies that the gaussian approximation

will improve as k becomes large. . . .

The derivation of the moments for the prediction density is not difficult.

This is not the case for the moments of the filtering density. Consider

for a moment the calculation of p(x,/zk 'I) from (2.6). First,, It is clear

that knowledge of p(xk/zkl) and the measurement equation

5k= kxk~ekxk+vk (3.7)

defines p(xk/zk) without error. The density for the vk is assumed

to be p( u k, exp - r!(Z . That Is the P(kYzk), using (2.6), In

formed by an algebraic combination of the densities. Unfortunately, it

is not an easy task to determine the moments of the density that results.

To understand this, note that

2 2

p(zk/xk) kvexp - !(Z--kxk-0k (3.8)

k

Assuming that p(xk/z ) is gaussian, the p(xk/zk) can be computed from

(2.6) and can be written as -

A 2 3 24

k x ek2 -2 k "kZkXk+n 2hkekxk+ekxk
Sexp_ - ( ........ 2 . .....2 k 

rk



where 2  1

2 2 2

~k Ilk Pk/k-

AA

* k r 4p+'
k rk/k-1

The ky Is a quantity not Involving the state xk . The and are

the variance and span that is obtained when the system is linear. Thus,

the measurement nonlinearity modifies the Altering density for linear

sye"z;s by appearing'as an exponential factor. This factor contains

the fourth power of the state. It is apparent that the moments

3[X f 1-- cannot be computed directly from (3.9) because of the nature

-of the second exponential factor. Thus, it becomes necessary to approximate

the moments in some way. This problem has been discussed in Reference 5.

For this discussion the approximation shall be accomplished indirectly.

First, one sees that the moments relating to the measurement (i.e.

Z 3C41k-1  ) can be-computed in the same way as was done for the
prediction density. Thus, one obtains

A A 2 ^2

% -k/k1 h kXkAI + klPk/k.I + 'k/k-1) 110)

When a measurement % is processed, the error in the estimate ^mk/

AGk  Z Zk-Z k/k.1

Then, hypothesize that an estimate x is obtained by adding the error
A

k linearly to the predicted estimate xA1

* k Xk/l I k kzk/k-1
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The gain matrix X. shall be determined so that the mean'square error

*:ZU~xm.)/Z to is2nimized.

Note the averaging is restricted to the measurement zk. The error is

found to be

Xkxk =k(Xk -/k 1) - klhk(xk-Xk,1)+ek (xk-'kA-. 1 ) +2AkA Alkek/k_, )

211 +
-Pk/k-1 k

It follows that the Kk that accomplishes the minimization is given by

(h 2g 2

KkA 2 24 2 (3.12)
r(hk +2k k/k1) tpk/.1r

The varianc, is approximated by z , k -(xA)2/sj and is found to be

2 2 . IkA (313). A

Equations (3,10) - (3.13) ar. the scalar versions of (2.13) - (2.14).

Although these results are admittedly obtained in a suboptimal fashion,

it is worth observing that this procedure yields the optimal solution

for linear systems [I] t Note that the estimate is stagevise unbiased.

That is , one finds that EZ~k Is equal to E~kwhen E~x 11Alz~ ~~~~~ 0 -O Lk-l'Xk- 1 *

Computational results obtained from these filter equations are encouraging

and suggest that the approximation is reasonably accurate and certainly

is an improvement over a purely linear approximation.
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IV, A NUNIERICAL EXAMPLE

In.this section a simple problem is considered in order to cempare the

linear and nonlinear filters: The example has been discussed previously

by Denham and Pines [2 in connection with the inadequacy of a linear

filter when the nonlinearity-is comparable to the measurement noise.

40

Consider a scalar system wit", a static plant

- (4.1)

and measurements described by

(4.2)

The statistics for the initial state and measurement noise are

* x =a; E -(xO a)2]aM2

* Er, ..0, -r,2] r.2
k k

The state xk will be estimated by using perturbation theory. Then,,

the results of the preceding sections will be applied to, estimate the

perturbations. The perturbation equations are

A1.X. ,(14.)

2x x- (4.4)

rk2k-1 k 26k S(44

where xk. is the nominal state and

Df
x'k = k-'k
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The nominal was chosen to be

7-0 a 
a

and this value was retained for all k.

This system was simulated on a.digital computer. The initial perturbation

&xO and the measurement noise sequence were obtained from a GaussianY0

random number generator according to the prescribed statistics. Some

typical results are portrayed in Figures I and 2. In these Figures the

standard deviation p.. forthe nonlinear filter is plotted as is the

absolute value of the error lxk,-^k for the linear and nonlineaf filter.

The P. for the nonlinear filter Is given because It is somewhat larger

than for the linear filter but is not significantly different. In Figure

I the variance of the initial perturbation is 0.01 and this was increased

to 0.1 for the results shown in Figure 2. The comparison of Pk and

x-Xk I indicates that the linear filter behaves somewhat satisfactorily
for the smaller initial deviation (i.e. Figure 1) although It seems to

be diverging as the number of samples increases. In the second case the

linear filter is obviously inadequate because the error and its statistic

are in complete disagreement. On the other hand tie nonlinear filter

gives significantly better results and suggests that a great deal more

confidence can be placed in the estimates. These results are typical

of those that have been obtained. (Unfortunately, the data from a

complete Monte Carlo simulation cannot be presented at this time).

The numerical results that have been obtained suggest several conclusions.

The two most important ire stated below.

(1) Unless the measurement noise is "small", the linear filter and the

nonlinear filter give essentially the same response. A precise

definition of "small" shall not be-attempted other than to say that

the noise must be small relative to the second order effects.

(2) When differences between the linear and nonlinear filters do arise,

the latter gives consistently better results in the sense that the

error and the statistic are consistent with one another.
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V. CONCLUSIONS

The problem oi obtaining estimates of the state of a nonlinear system

is frequently solved by applying linear perturbation theory and using

linear estimation theory to determine the perturbations. While this

procedure is frequently satisfactory, many examples have been encountered

in which second order effects.are small but nonnegligible. The application

of linear theory to nonlinear problems is essentially a means of

approximating the mean and covariance of the a posteriori density. In

this paper attention has been directed toward the development of

approximations of these moments that include the influence of second

order terms. The approximation involves the explicit assumption that

the density is gaussian. This is not true for nonlinear system but

it is felt that the first two moments will not be severly affected as

long as the nonlinearity is small. Certainly, one would expect the

accuracy of the moments containing the second order effects to be superior

to the linear moments,

The immediate disadvantage of utilizing a quadratic perturbation theory

lies in the increased number of system matrices that have to be determined.

For lknear systems the linear transition matrix is (nxn) and the observation

matrix is(mxn). When the second order effects are included, there are

n additional (nxn) plant matrices and m more (nxn) observation matrices to

be calculated. The increase in computational requirements can be

catastrophic for large n. This problem can be circumvented to an extent

by establishing the equations in which the second order effects are

significant and neglecting the insignificant effects in the other equations.

Although these results may require significantly more calculation, they

do provide a systematic way for modifying linear estimation theory to

include nonlinear effects. Numerical results for simple examples indicate

that significant improvements in the response is possible when the

nonlinearities are comparable to the noise. Thus, a sizable increase in

the range of applicability of perturbative techniques may be provided.
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